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INTRODUCTION

For the fundamental two-receiver passive location system illustrated

in figure 1, the available time-delayed signals are observed in the presence

of receiver noise and/or interference. By temporarily neglecting possible

doppler effects, the received signals can be expressed in the simple,

general form

rl(t)= s(t) + nt) 0 s t !s T

r (t)X•8=(st- T)+n 2(t) nO s t :s T2+ 'o (2)
20 2 0

where s(t) is an unknown signal, X is an unknown relative amplitude,

T = ( R 1 )/c is an unknown relative time-delay, and the n (t) are in-

dependent noise and/or interference present at each physically separate,

time-synchronous receiver. The complicating effects of signal doppler,
which may or may not be present, are reviewed in a later section.

£: This paper considers the case of bandpass signals with one-sided

spectral bandwidths of W Hertz centered about the angular carrier frequency

Sradians/sec. (Similar results can be obtained for lowpass signals.)o

Consequently, the observed signals can alternatively be expressed in terms

of their complex (phasor) amplitude as

rl(t) as(t) + n(t)=Ii t)+ JQlt M__ t <TI (3)

ii 5
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r2t= st--ej + n2t=2t+ ) Tr :s t :s T2+ "° (4)

where the overbars denote complex variables; ej -e-JCo" is an unknown,

ambiguous r elative phase distributed uniformly over [ 0, 2ir] radians; and

the I (t) and Q (t) are the complex quadrature components observed at

2 o

each receiver.

Since digital methods of transferring and processing the received

signals are of interest, discrete-time samples of the form

r r 1(i"t) = Sl + n = 11, + JQ i= 1,2,. N
(5)

r 2,p r2 (pA t + TO) = pp+m ej1+ n p + 1, 2,. .. N 2

(6)

where T, = N At and T2=--N2At are assumed, As long as Aýt _5 1/%',

the samplLig theorem for time-limited, bandpass signals 1] indicates that

all the information observed at the receivers can be specified by the com-

plex sample sequences

!I
NN

-2
T r- 1, : -- K and ij 2, p-_2
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where the underbars denote vector variables. As a simplifying assumption,

it Is assumed in equation 6 that the unknown offset lead (negative lag) index

m ( To r-) /,at = -( ,r - ro / , (7)

is an integer. This assumption keeps the analysis simple and general and

can be properly accounted for by a statistical processing loss after a specific

receiver bandpass characteristic and a specific sampling interval, at, have

been chosen. For Nyquist sampling rates, at = 1/W, this loss will be on

the order of 1 dB [ 2. If desired the loss can be reduced as low as desired

by oversampling or can be eliminated by interpolative processing since the

two complex sample sequences specify all the observed information.

8



OPTIMAL WHITE, GAUSSIAN SYSTEM

If the signal and noises are stationary, white, zero-mean, Gaussian

stochastic processes, the optimal likelihood ratio statistic to detect the

presence of a correlated signal (hypothesis 2; -T 1 :_ r- r _ T 2 ) versus

absence of a signal (hypothesis 0; s(t) = 0) or the presence of an uncorre-

lated signal (hypothesis 1; r- T < -T or r- r > T 2 ) is [3] the magni-

tude (envelope) of the normalized sample cross-correlation function bf-tween

the two separately observed complex sequences, R- - (m)1. The

normalized sample cross-correlation function for a canAidate lag, k, is

N(k)+ k

N(k) 1 1 r 2 ik 0 k N 1

i=k+l

R- • (k)= (8)r r2 N N(k)

•+ - 1) k <0I k ý, ,2i-k 2

t

where

N(k) (9)

(N1 N 2 -k) - 2  1) k

9



is the number of overlapping complex samples in the sequences for a lag of

k and the asterisk denotes complex conjugation. Note that the maximum

value of N(k) is min (N1, N2 ) and is maintained over an interval of length

(IN1 - N2 +1)At. The optimal two-receiver statistic,

1-12 TR- - (k) r. A(k)

can test for the presence of signals with time-delays in the interval

[-T r T - s T 2 and is strictly optimal only when N(k), the number

of independent complex terms in the cross-correlation sum, Is large in the

law of large numbers sense. Not only does the cross-correlation statistic

lose its condition of optimality near the interval's edges, but its performance

degrades unacceptably since the cross-correlator output signal-to-noise

ratio, F, for each candidate lag of k is (3 1

r(k) - E TRk 1211 Tri 2 (10)
E[ } R(k)i 2/H2 ] i (10
E iR )1 2 /,, jj +2

where T(k) = N~k) At is the overlap time for the lag of k and

10



and

F2 E [INs (t -r)12] E I X;(t -oI2] 12

E nt) E [I2(t)] 2

are the input signal-to-noise ratios at receiver 1 and receiver 2. The

probability of detection and the probability of false alarm are interrelated

as [ 31

P k 217( ,T-2 in[ () (13)

where Q(a,fl) is Marcum's Q Function [4].

When the presence of a time-delayed signal is indicated, the maximum

likelihood estimate of the time-delay corresponds to the lag, k, at which

the interpolated magnitude of the normalized sample cross-correlation func-

tion is maximum and is obtained from [ 3 j
T = T - Mt (14)

0

When the output signal-to-noise ratio is large, the time-delay estimation

error is asymptotically unbiased, Gaussian, and efficient with a variance

of[3]

2221 1 (15)

where B is the rms bandwidth of the receivers (about the carrier) in

radians/second.

11



Figures 2 and 3 illustrate the optimal two-receiver coherent passive

location system as developed above. Because of the unknown signal and

noise/interference levels, an adaptive threshold, T0, must be generated

for each candidate lag k as illustrated in figure 3. Note that, as shown by

equations 10, 13, and 15, the detection and time-delay estimation perform-

ance of the optimal system at each possible lag, k, is completely character-

ized by the output signal-to-noise ratio, F(k), which increases linearly with

the overlap time-bandwidth product. Equation 10 indicates that the output

signal-to-nIlse ratio observed at the cross-correlator will always be less

than the overlap time-bandwidth product.

12
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GENERAL OPTIMALr1'Y

If the signal and/or noise statistics are non-Gaussian but stationary

and N(k) is large, the normalized sample cross-correlation function, R(k),

will remain optimal in a least mean square sense and will attain the perform-

ance of the optimal Gaussian case. If, in addition, the signal and/or noise

statistics are not stationary (e. g., pulsed or otherwise deterministically

amplitude or phase modulated), the normalized sample cross-correlation

function will still remain optimal in a least mean square sense and will still

attain the performance of the optimal Gaussian, stationary case if the

overlap time, T(U) = N(k)At, is sufficiently long so the mean square sample

statistics of the signal and noises,

Ei 1 2

j==
N(k)

1 2

iN=l

and

N(k) 
12

S,1=1

., 15



are essentially stationary (independent of the interval length; i. e., constant)

and the sample cross-correlations between the signal and noises are

essentially zero.

The previous discussion indicates that a coherent passive location

system that cross-oorrelates signal segments observed at physically sepa-

rate receivers is inherently robust (e. g., will perform well against either

pulsed or oontinuous signals which may be either random or deterministic)

and makes optimal use of thee available information as long as the observa-

tion intervals and cross-correlation intervals are statistically long. To

obtain this optimal performance and versatility, the two-receiver system

can be implemented with either collocated or remote processing as shown

in figures 4 and 5.

16
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DOPPLER COMPENSATION

The previous analysis assumes that doppler effects, due to relative

motions between the signal source and either or both receivers, are

negligible. Doppler effects can be accounted for by modification of

equations 4 and 6 to

r2(t) =Xs(t- r) e e +n 2 (t) (16)

- JWd(P+m)At
r2,p Sp+m e + n(17)

where the relative (differential) doppler frequency between the two time-

delayed signals in radians/second is

,i - o (t2- k1)
i d = ¢dW (18)

dc d2 d(

This simple formulation assumes that the signal bandwidth W is large

compared to each received doppler frequency, Wd and u2' and that
12

signal compression/expanslon effects and effects due to higher-order

motion terms (e. g., acceleration) are negligible over the prospective

cross-correlation overlap times.

When no signal is present (hypothesis 0) or when the observed signals

are uncorrelated (hypothesis 1), the linearly increasing doppler phase

19L
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introduoed into the normalized sample cross-correlation function statistic, i

R(k) (see equations 5, 8, and 17), will not cause a change in the cross-cor-

relator output signal-to-noise ratio (equation 10) since the phases are already

random. For the correlated signal case (hypothesis 2) the loss in cross-

correlator output signal-to-noise ratio for a particular doppler frequency, Wd,

and a prospective time-delay lag, k, can, by a modification of equation 10,

be expressed as

E [ 2, d - E [~)2~

By an examination of the components of equation 19, the doppler decorrelation

loss factor, 0: Ld_ 1, where Ld =1 is the case of no loss, can be shown

to satisfy the bound
N k),t2

E eJ d ~[ q

Ld(k,wd ~ i

d (4dN(k) 2)

1-1 q=i

22
E[ 1

N(k) 2 [i(N)t

Q= 
(20)_________

t=1 q=1 ~in~

2.0
N (k JC 'It 2 in NN) d A



where the last Inequality holds for moderate or large N(k) and is proved

in the appendix. This doppler decorrelation loss bound is illustrated in

figure 6. Note that 3 dB of loss is obtained for

f4 d 0. 443 (21)
N (k)A4t

If expected doppler decorrelation losses are unacceptable, they can

be reduced as low as desired by a doppler compensation filter bank. Each

doppler filter bank section compensates for a prospective doppler, W and

implements a compensated normalized sample cross-correlation function

of the form

Nkk)+k jwA
Sr r e 0 • k <_N -i

Nk)1, 1 2,1i-k i1)
i=k+l

R k)(22)
N (k) Jw ati

E - e ( !s1 ~k 0

which is a Fourier Transform of the N(k) normalized cross-correlation

product samples for a lag of k, rl,i r2, ik, and can be implemented for

a discrete number of equally spaced compensated frequencies I

where

N-=mLn(NI, N2 ) (24)

21
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by two complex shift registers of length N, N complex multipliers, and

an N Point Discrete Fourier Traneform as illustrated in figure 7.

Doppler compensation processing will reduce output signal-to-noise

ratio loss to Ld(k, wd -c) where wc is the closest compensation

frequency to wd" If the differentia2 doppler is uniformly distributed over

the compensated frequency band, the average doppler decorrelatlion loss

factor for a lag of k will be bounded by

4 N~~At Sn (k)- -At I ct(5

LL
r

k 23
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DATA TRANSFER REDUCTION BOUNDS

Direct implementation of the optimal two-receiver coherent passive

location system developed above ,IlI require the transfer of one or both of

the complex sequences, E, and with a high degree of accuracy (large

number of bits representing each receiver sample). Since higher place bits

carry diminishing quantities of information, it is clear that truncation of

high place bits will reduce data transfer requirements without significantly

reducing system performance. Techniques for minimizing the data transfer

required to maintain reliable system performance are desired. The general

one-channel data transfer reduction situation is illustrated in figure 8.

Rate distortion theory provides bounds on data transfer reduction for

particular types of information sources and distortion (error) measures.

The information of a memoryless, Gaussian-distributed source with a power
2

of a car be transferred over a noiseless channel, as illustrated in figure 9,

with a mean square error between the input and output complex sequences of

D= E i- (26)

by the use of an information rate, R, of [5

/D\ 2R -log,2 0 D a (27)

where the rate is in bits per complex sample. This rate is also sufficient

for any non-Gauesian source [51.

25
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tI
For the one-channel data transfer reduction situation of figure 8 where

the data of receiver 2 is assumed to be quantized, the cross-correlator

output signal-to-noise ratio (see equations 8 and 10) can be expressed in

the form

F~~~k) ~~ = i1....)I (
N Ek )-i r r2,1-k 2, i-k 2

L=1

where q 2 , is the complex quantizing noise of the r 2  sample. The

loss in cross-correlator output signal-to-noise ratio, 0 :s L s 1, for a
q

particular lag, k, can be shown to be of the form

1

q (k) 2 (29)q 1I+C2

where

+~21 +Re~ E [j2ri*P] E _i

2 '1 2 22 D1

E:[1; 29 ]E[1 r 2,p12 a

(30)

with

01 E 1E[r2,p1 2] E Xs(t - r). +2 E n 2(t) (31)

28



2and D/o2 is the ratio of mean quantizing noise power to mean quantizer

input signal power. The inequality of equation 30 holds due to the known

nonpositive correlation between quantizer input signal and quantizing noise

when the quantizer bin outputs are chosen as the mean input values of each

bin [ 6 ] or when other more general conditions are satisfied. Thus, the

L quantization loss factor has been shown to be bounded by

11 1
Lq -+ 2  D - R (32)S I+E 1+- 1+2-

2

where the last inequality is obtained by the application of the bound of

equation 27. The rate distortion bound of equation 32, which holds for all

input signal-to-noise ratios, is shown in figure 10.

If the -eceived signals and noises are Gaussian, performance within

1/2 bit per complex sample of the rate distortion bound, as shown in

figure 10, can be obtained for all input signal-to-noise ratios by either [5]:

1. Optimal but complex entropy encoding combined with the

use of uniform I and Q quantization bins, or

2. Uncoded (direct) transfer combined with the use of optimal

minimum mean square Max [ 7 ] quantization bins.

Either of these techniques would be moderately complex to implement and

both assume knowledge of the received signal and noise probability densities,

Performance would degrade significantly unless adaptive processing were

also provided to adjust for unknown amplitude and/or distribution.

29
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CANDIDATE DATA TRANSFER REDUCTION TECHNIQUES

The performance of two simple, robust data transfer reduction

techniques was obtained by digital simulation for the one-channel situation

of figure 8 with stationary, white, Gaussian signal and noise sequences.

Both techniques utilized direct decimal-to-binary encoding (uncoded transfer).

The first data transfer reduction technique transferied and cross-

correlated only the quantized phase of each complex sample of receiver 2.

The simulated phase cross-correlation was of the form

1 N(k)+ke -

NR(k) 1 N)_
i=k4-

R1 2 k)N (k)

e 1-'2-) - (N2 - ) ( k 5 0

(33)

where the tilde denotes a quantized version of the corresponding received

phase samples

a 0 tan and e ta. (34)

1 1 L1,ij2p 2,p

31



Uniform phase quantization bins, as illustrated in figure 11, were utilized

with the center of each bin used as the quantizer output. Because of the

assumed uniformly distributed random receiver phase, 02,p, direct encoding

with uniform bins achieves the optimal rate distortion bound for Gaussian

1 2 2-sources of R = -log where - . Thus, phase can be
1 lo 2 (j-ý wherc'0

transferred with minimal distortion by extremely simple quantization and

encoding techniques. Simulation results obtained for the case of 0 dB input

signal-to-noise ratio at each receiver are shown in the upper curve of

figure 10. Receiver I utilized lfull" phsse data (10 bits per phase sample

were actuaJll used). Receiver 2 utilized varying levels of bits per phase

sample as indicated by the abscissa of figure 10. The curve shows that,

for the 0 dB input conditions, as phase quantization increases data transfer

reduces faster than loss increases until 2 bits per sample is reached. Note

that for phase-only cross-correlation processing the dropping of amplitude

information at both receivers results in a minimum loss of 2 dB for the

0 dB input conditions,

The second data transfer reduction technique used half the available

bits per complex sample for the I component and the other half for the

Q component, Uniform quantization bins symmetrically spaced about 0 were

utilized with the centcr of each bin used as the quantizer output. To elimi-

nate the use of unneeded quantization bins and to provide adjustment for

unknown amplitudes, the maximum magnitudes of both the I and Q compo-

nents of each receiver's complex sample sequences were determined before

quantization and the positive and negative quantization bin limits of each

receiver were adaptively adjusted to the receiver's maximum component

magnitude. Results for the case of 0 dB input signal-to-noise at each

32
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receiver are shown in figure 10. Receiver 1 utilized "t'ull', I and Q data

(5 bits per T sample and 5 bits per Q sample were actually used). For the

0 dB input conditions, data transfer reduces faster than loss increases

until 2 bits per complex sample (1 bit I and 1 bit Q) is reached. In general,

the I and Q technique performs better because it does no, drop amplitude

information. However, for the 2-bit case, where minimal data transfer is

attained for a specified performance for the 0 dB inputs, essentially the

same data are transferred from receiver 2 for both techniques. The 0. 6 dB

performance improvement of the I and Q technique is attributable to the use

of full I and Q data from receiver 1 instead of merely full-phase data.

Hybrid techniques that allocate part of the receiver 1 bits to phase and part

to amplitude would provide intermediate performance between the I and Q

and the phase-only curves (e. g., see ( 8 ], [ 9 ], and [ 10 j ). This [ and Q

technique was used because of its simplicity. It is not optimal. However,

as shown in figure 10, less than 1 dB could be gained for these conditions

by use of the more complex data transfer reduction techniques discussed

in the previous section. Note that since the I and Q technique provides less

performance loss, a specified level of system performance would be pro-

vided by shorter observation intervals. Shorter Intervals, in turn, would

reduce the doppler decorrelation loss.

34



CONCLUSIONS

The optimal pasive coherent location system for the discrete-time,

bandpass case and its performance characteristics, including the effects

of doppler, were presented for the fundamental two-receiver system.

These systems are robust and make optimal use of the observed information.

Since large quantities of data must be transferred to implement these sys-

tems, the performance losses incurred by two simple data transfer reduc-

tion techniques were compared to performance loss bounds obtained from

rate distortion theory and to the losses of two of the best available, but

considerably more complex, data reduction techniques. I and Q quantization

with simple uniform, adaptive bins was shown to provide data transfer

reduction close to those attainable by the more complex techniques.

35
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APPENDIX

The Fourier Transform of the discrete sequence of N uniformly

spaced, complex samples,

N

I fI I=t)

is

N

F(w) = E f eJwati (A-i)

1=1

Assume the fi samples are taken from a bandlimited process of bandwidth

W Hertz and are taken at or above the Nyquist rate, At _ 1/W. By intev-

changing frequency and time in the sampling theorem for bandlimited

signals [ 1], the bandlimited Fourier transform may be expanded in terms

of its frequency samples spaced at or above the equivalent Nyquist rate

aw = 2-r/NAt, since the signal is time-limited. Thus, the Fourier transform

of equation A-1 can be expanded as

SN-i sin N • (A-2)

F(W)= Fi ' 2 N)

1=0 N sin W-a--.)

37
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where

4F 1 = F(icw)

and

Ac4=2Tr/Nnt

Consequently, the mean squared magnitude of F(w) can be expressed as

2

N~ ~ -![ 1 ~) 1' N" T

1-i 2

(A-3)

N-i N-i [sin N(ýýA-t2j

+2 Re E[F FI 2 -t~ IJ

kji

Jsin L,)4 _Ir fl
Ssin( 2 N

38
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It is well know., that the Fourier frequency samples, F = F(i 21r/N~t), are

essentially uncorrelated and their correlation decreases to 0 at a rate of

at least 1/N as the number of samples, N, increases [ 11 ]. Consequently,

for moderate or large N, the second summation of equation A-3 will always

be larger than the third (double) summation. Thus, for moderate or

large N,

r2sin~~ [1,iýýt) ] N2E'F(Wý2tE Fo2 st1(•" ) =E [IF.2 •12e]•t

0F JE FJ N sin ( j N

(A-4)

The result of equation A-4 can be expressed, by the use of equation A-i, as

E N [ff<] e-jw'at(l'k) N 2
k=1 i=1 1 e-jw0•ti

N N N

k=1 I=1

(A-5)
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